 
	  
      The benchmark is done by running the following codes:
max_size: 10.000, 100.000, and 1.000.000The result (find nth prime number using Sieve of Eratosthenes):
| Max Size | Running Time (s) Dinfio 3.1.04 | Running Time (s) Dinfio 3.1.03 | Memory Usage (MB) Dinfio 3.1.04 | Memory Usage (MB) Dinfio 3.1.03 | 
|---|---|---|---|---|
| 10k | 0.005 | 0.011 | 1.2 | 1.9 | 
| 100k | 0.032 | 0.14 | 8.9 | 14.5 | 
| 1M | 0.34 | 1.86 | 82.9 | 141.3 | 
            
The result (linear search):
            
            
| Total Data | Running Time (s) Dinfio 3.1.04 | Running Time (s) Dinfio 3.1.03 | Memory Usage (MB) Dinfio 3.1.04 | Memory Usage (MB) Dinfio 3.1.03 | 
|---|---|---|---|---|
| 10k | 0.011 | 0.013 | 0.7 | 4.4 | 
| 100k | 0.081 | 0.124 | 7.9 | 43.9 | 
| 1M | 0.786 | 1.505 | 78.3 | 437.2 | 
            
Code (find nth prime number using Sieve of Eratosthenes):
            
' nth Prime Number using Sieve of Eratosthenes
 
start
    max_size = 1000000
    nth = 10
    primes = []
    is_prime = []
 
    sieve_of_eratosthenes()
 
    writeln(nth & "th prime number is " & primes[nth - 1])
stop
 
function sieve_of_eratosthenes()
    for i, 0, max_size
        is_prime[i] = true
    endfor
 
    p = 2
 
    while p * p < max_size
        if is_prime[p]
            for i, p * p, max_size - 1, p
                is_prime[i] = false
            endfor
        endif
 
        p += 1
    endwhile
 
    for p, 2, max_size - 1
        if is_prime[p]
            append(primes, p)
        endif
    endfor
stopCode (linear search):
' Linear search
 
import fileio
 
data = []
key = "1000000"
found = false
 
 
' Read data from file
 
f = file("data-" & key & ".txt", file_read)
 
while !f.eof()
    append(data, f.readln())
endwhile
 
 
' Search the key
 
for i, 0, size(data) - 1
    if key == data[i]
        found = true
        break
    endif
endfor
 
writeln(found)Data: linear-search-data.zip.
            The benchmark is done by running a linear search with total data: 1.000, 10.000, 100.000, and 1.000.000. The key is located at the end of the data.
            System: MacBook Air Early 2015, Core i5-5250U 1.6 GHz Dual Core, 8 GB DDR3 RAM, macOS 10.14.5.
        
The result:
| Total Data | Running Time (s) Dinfio 3.1.01 | Running Time (s) Dinfio 3.1.0 | 
|---|---|---|
| 1k | 0.005 | 0.011 | 
| 10k | 0.019 | 0.053 | 
| 100k | 0.195 | 0.521 | 
| 1M | 2.231 | 5.544 | 
Code:
import fileio
 
data = []
key = "1000000"
found = false
 
 
' Read data from file
 
f = file("data-" & key & ".txt", file_read)
 
while !f.eof()
    append(data, f.readln())
endwhile
 
 
' Search the key
 
for i, 0, size(data) - 1
    if key == data[i]
        found = true
        break
    endif
endfor
 
writeln(found)Data: linear-search-data.zip.
            The benchmark is done by running a loop of variable assignment 1.000.000, 10.000.000, and 100.000.000 times. Performance is compared to Dinfio 3.0.12.
            System: Core i7-8565U 1.8 GHz Quad Core, 8 GB DDR4 RAM, Windows 10.
        
The result:
| Loop Times | Running Time (s) Dinfio 3.1.0 | Running Time (s) Dinfio 3.0.12 | 
|---|---|---|
| 1M | 0.031 | 0.82 | 
| 10M | 0.28 | 4.16 | 
| 100M | 2.67 | 28.82 | 
Code 1:
n = 1000000
 
for i, 1, n
    a = i
endforCode 2:
n = 10000000
 
for i, 1, n
    a = i
endforCode 3:
n = 100000000
 
for i, 1, n
    a = i
endfor